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The Role 

Using an integral-equation approach based upon an approximation for the tail 
function, the equilibrium properties of a system of hard spheres are studied with 
special concern for the behavior in the region of close packing. The closure 
adopted is such that full, internal consistency is ensured in the thermodynamics 
of the model with respect to both the two zero-separation theorems as well as 
to the more standard virial and fluctuation routes to the equation of state. The 
scheme also makes use of the continuity properties of the tail function and of 
the cavity distribution function at contact. These properties are explictly tested 
in the low-density limit up to the fourth derivative. The theory generates an 
equilibrium branch bounded on the high-density side by a point corresponding 
to a packing fraction ~/-~ 0.78, a value which closely matches Rogers' least upper 
bound for the densest packing of spheres. The pair structure of the fluid in 
the state of random close packing is also compared to the type of local order 
predicted by the theory at similar densities. 

KEY WORDS: Hard spheres; tail function; zero-separation theorems; self- 
consistent theory; equation of state; random close packing; closest packing. 

1. I N T R O D U C T I O N  

In  this p a p e r  we revis i t  a se l f -consis tent  O r n s t e i n - Z e r n i k e  ( O Z )  a p p r o a c h  

to the  s t ruc tu re  a n d  t h e r m o d y n a m i c s  of  h a r d  spheres  (I'2) and  ana lyze  in 

d e e p e r  de ta i l  the  p r ed i c t i ons  offered by the  t h e o r y  in the  h igh  p a c k i n g  

reg ime.  

I n  the  absence  of  the  exac t  so lu t i on  of  the  m o d e l  bu t  for  one  d i m e n -  

sion,  an  o ld  bu t  still d e b a t e d  q u e s t i o n  wh ich  bears  f a r - r each ing  impl i ca -  
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tions is whether an equilibrium statistical mechanical theory for a classical 
continuous system of hard spheres should exhibit a natural breakdown (in 
the form, say, of some divergence undergone by the thermodynamic 
properties) at the highest density allowed by Euclidean geometry for an 
ordered crystal configuration or, instead, at the lower random close- 
packing (RCP) density, which then would mark the end of the (metastable) 
overcompressed fluid branch. 2 Of course, the deeper underlying question is 
how the claimed discontinuous fluid-to-solid transition which has been 
almost undoubtedly assessed by numerical simulation experiments (6) for a 
finite system with periodic boundary conditions would eventually show up 
in the exact canonical partition function after a properly taken thermo- 
dynamic limit. Furthermore, it is not even clear whether and where any 
signature whatsoever of the RCP threshold would thereby emerge as well. 
Unfortunately, at such high densities numerical experiments progressively 
meet with growing difficulties in sampling--over the time scale of the 
simulation--the equilibrium state of the system pertaining to a given set of 
thermodynamic parameters. Therefore, the resulting information may not 
necessarily be consistent with the results obtained by use of integral equa- 
tion theories which, on their own, start to be plagued, in such a regime, by 
quite serious shortcomings which make any prediction almost completely 
unreliable. In this contest, the most venerable approximation used for 
dealing with structural correlations in a model system of hard spheres, viz., 
the one proposed by Percus and Yevick (v) (PY) and solved analytically by 
Wertheim (s) and Thiele, (9) leads to a divergence in the equation of state 
(EOS) at a relative packing fraction t/PmV, x = 1, while the highest physically 
accepted value for this quantity in three dimensions is qcp=g  xf2/6, 
corresponding to a face-centered cubic (FCC) or hexagonal closest-packing 

PY (HCP) crystal arrangement of spheres. On the other hand, at ttmin ~- 0.61, 
indeed just below the currently estimated RCP fraction qRCl,= 
0.64+0.02, (1~ the PY radial distribution function (RDF) g(r) starts to 
attain negative values in the region of the first minimum, an occurrence 
which obviously conflicts with the very definition of the RDF itself. One 
question which seems natural at this point is how the two features depend 
upon the chosen integral closure and, more specifically, upon the intrinsic 
ambiguity rooted in the thermodynamics of the model. In fact, the virial 
and fluctuation routes to the pressure are known to yield different results 
in the PY approximation, and such a discrepancy grows rapidly with the 
density. (H) It is then reasonable to wonder whether an augmented PY 
theory, conveniently modified in its basic ansatz so as to ensure complete 
thermodynamic consistency at the level of structural pair correlations, 

2 Recent contributions explicitly addressing this point are given in refs. 3-5. 
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would lead to more sensible predictions on approaching the close-packing 
regime. In particular, the evolution with more refined closures of the gap 
marked by the densities corresponding to t/PY and PV m a x  /~min in the PY 
approximation might also yield hints of some relevance for the questions 
outlined above. It is in this direction that the present work tries to give a 
contribution, aiming, in the very least, at accomplishing a finer under- 
standing of the role played by thermodynamic consistency in an integral 
equation approach to the study of the liquid state. 

2. AN A P P R O X I M A T I O N  FOR THE TAIL FUNCTION 

The Percus-Yevick approximation for a single-component fluid of 
hard spheres consists in assuming that the direct correlation function 
(DCR) entering the OZ equation 

h(r) = c(r) + p f dr' h(Ir - r'l) c(r') (1) 

vanishes outside the core diameter a: 

C p y ( r )  = O, r > o- ( 2 )  

In Eq. (1), p is the particle number density and h(r)= g(r ) -1  is the total 
correlation function, which, as a consequence of the impenetrability of the 
particle core, on its own satisfies the exact condition 

h(r )=  -1 ,  r < a  (3) 

The assumption made in Eq. (2) is notoriously a rather crude understate- 
ment over the space decay of the hard-sphere c(r) as calculated via 
numerical simulation experiments. (12) The most prominent feature that 
Eq. (2) is missing is the positive tail of the DCF outside the core. In fact, 
on increasing the packing of the spheres, a peak develops at r = tr § which 
becomes sharper and sharper with the density. For states of the system 
below the freezing point, this tail substantially decays to zero for distances 
r >2~r. The rationale behind the presence of such a feature in the DCF 
can be qualitatively explained upon thinking of -kBTc(r) (where ka is 
Boltzmann's constant and T is the temperature) as an effective potential in 
a scheme ~ la Percus. 3 In this picture, it can be easily understood that the 

3 This potential can be actually associated with the virtual presence in the fluid of an extra 
pseudocomponent of highly diluted "fi~eld-generating" particles producing locally a density 
profile equivalent to the relative spatial arrangement autonomously exploited by the 
reference system and properly characterized via its bulk RDF (see, for instance, ref. 13). 

822/63/1-2-10 
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short-ranged tail outside the core does in fact mimic a net average attrac- 
tion acting between a couple of spheres in spite of the absence of any 
attractive interaction in the Hamiltonian. This effect is the result of a 
collective interplay involving all of the remaining particles which induce a 
topological confinement of the tagged pair with a strength that is clearly 
enhanced by an increase of the density of the system. 

The simplest way to model this feature in the DCF dates back to 
Waisman, (14) who proposed a Yukawa form for the DCF outside the core: 

K 
c w ( r ) = ~ - f ~ e x p [ - z ( r - a ) ] ,  r > a  (4) 

This approximation is in fact appealing, as it leads to an analytical solution 
of the OZ equation for the DCF inside the core in a "variational space" 
spanned by two free parameters, K and the inverse range parameter z, 
respectively. Waisman determined these two quantities by forcing the ther- 
modynamics of the model as calculated via the virial and compressibility 
routes to reproduce the experimental results parametrized by the Carnahan 
and Starling (CS) EOS. (15) This procedure is, however, conceptually 
unsatisfactory, since one needs an external input to evaluate the parameters 
as a function of t /= (re/6) pa 3. As a result, the theory does not possess full 
predictive power, merely achieving a realistic parametrization of the struc- 
tural properties of the fluid. On the other hand, in order to set up a totally 
self-contained scheme, one would need two equations to fix K and z, and 
the requirement of internal consistency between the virial and fluctuation 
routes to the EOS does not clearly suffice by itself for this. A way to over- 
come this difficulty, as originally proposed in ref. 1, is to resort to the two 
zero-separation theorems (16't7) which lead to a small-r expansion for the 
cavity distribution function y(r)  in the form 

In y ( r ) = f l #  --2 -+a "'" (5) 

where y(r)  = exp[flu(r)] g(r), u(r) is the interatomic potential, fl = 1/k B T, 
and ~t eX and pex are the excess parts of the chemical potential and pressure, 
respectively. Equation (5) provides in principle other two consistency con- 
straints for the thermodynamics of the system, but requires the knowledge 
of y(r) inside the core. This information can be mapped equivalently onto 
that for the "tail function" d(r) - c(r) + y(r) - g(r), which for hard spheres 
takes the form 

d(r) = ~y(r)  + e(r), r <~ ~ (6) 
~ c(r), r >t 
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The tail function, at variance with the behavior of both g(r) and c(r), is 
known to be continuous at r=cr. This property rests upon the 
demonstrated continuity at contact of the cavity distribution function (9) 
and of the function O(r) =- y ( r ) -  d(r)J 18) This latter result is quite general 
and follows from the OZ equation which also implies the Fourier trans- 
form of d(r) to be positive semidefinite. (19) 

In ref. 1 the authors, modifying a suggestion originally due to Hender- 
son and Grundke, (2~ proposed the following functional parametrization 
for the tail function: 

) d(x)= Kexp e , ( x - 1 )  n , x ~ l  
n 1 ( 7 )  

Cw(X), x > 1 

where x = rflr. In that paper, the upper summation index N was set equal 
to 3. For this reason, from now on we shall refer to that version of the 
theory as SCT(3) [i.e., self-consistent theory (3)]. 

Equation (7) is still kept as the starting point for the present analysis 
of the structure and thermodynamics of a model system of hard spheres. 

3. T H E R M O D Y N A M I C  CONSISTENCY IN THE HOYE A N D  
STELL S C H E M E  

Given Eqs. (3) and (7), the OZ equation can be explicitly reduced, in 
the scheme exploited by Hcye and Stell, (21~ to a pair of equations for the 
Yukawa parameters z and K in the form 

z=z[?1, a, y(1)]  (8) 

K =  K[?1, z, a, y(1)] (9) 

where y(1) is the contact value of the cavity distribution function and 

a -  = 1 -2471 c(x)x2dx (10) 
'~0 

Hence, in this scheme, the structural properties a and y(1) replace z and K 
in the role of basic primitive quantities. While referring the reader to the 
original paper by Hcye and Stell for a complete analysis of the solution of 
the OZ equation, we just report here Eq. (8) in its explicit form, as it will 
turn out to be useful in the following: 

2 
z = - (1 -- 71)3 Aa (6?1(1 - -  7 1 )  2 Ay(1) ~ + (1 + 271) 

x {671 Ay(1)[671 A y ( 1 ) -  (1 --?1)z Aa] }~/2) (11) 
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where 

Ay(1) = y ( 1 ) -  yvPY(1) (12) 

A a = a - a  PY (13) 

and y PY( 1 ) = ( 1 + r//2)( 1 - r/) - 2 and af PY = ( 1 + 2r/) 2 ( 1 - t/) - 4 are the PY 
virial and fluctuation expressions for y(1) and a, respectively. 

All of the quantities entering the Waisman solution for the D C F  inside 
the core can then be expressed in closed analytical form as functions of t/, 
z, K, a, and y(1). However,  our  approximat ion for the tail function calls 
into play N + 2 unknown parameters  which need to be uniquely specified. 
As anticipated in the preceding section, the basic criterion introduced in 
ref. 1 was to require complete thermodynamic  consistency at the level of 
pair correlat ion functions. 

In the first place, the equivalence between the virial and fluctuation 
routes to the equat ion of state leads to a differential constraint in the form 

a(r/) = t +~--- &/ [4r/2y(1 )] (14) 

On the other hand, from the short-distance behavior of y(x) it follows that 
the following conditions should also be satisfied: 

d ( 0 ) = K e x p  ( -  1)n c~n(t/) 
n 1 

= exp(fl/~ ex) + c(0) (15) 

and (N ) d'(0)= ~ (-1)n-~n~n(n) d(0) 

= 6r/y(1) exp(fl# ex) - c'(0) (16) 

where d '(0)-= [Od(x)/OX]x= o. 
Upon  integrating the virial equat ion of state, one finds for the excess 

chemical potential  

fl#e• = ( 4~ly(1) + g f~ y( e ) d~l ) (17) 

F rom the OZ equat ion applied to a system of particles with a hard core we 
get for the D C F  and its space derivative at the origin 

c(O) = - [a(r/) + v(r/)] (18) 

c'(O) = 6r / [y(1) ]  2 (19) 
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where 

f 
op 

v(r/) = 2@ c(x)  g (x )  x 2 dx  (20) 
1 

Equation (19) has been recently proven in an extended form by Zhou and 
Stell. (22) However, being a general consequence of the specific integral 
structure of the OZ equation, it is also tautologically satisfied by every OZ- 
based theory and, in particular, by the Waisman approximation, as can be 
easily verified via an explicit calculation of C'w(X) at x = 0. As far as the 
quantity v(~/) is concerned, in the present scheme it becomes the Laplace 
transform of the RDF and its expression in terms of q, z, K, a, and y(1) 
can be found in ref. 21. 

Upon using Eqs. (17) and (18), one can put Eqs. (15) and (16) in the 
form 

N 

2 
n ~ l  

(-- 1) ~ CG(t/) = --In K +  f i /~  + ln{1 -- Ea(t/) + v(t/)] exp(-//#ex) } 

(21) 

N 

( -  1) n-* ne,( t / )= - {6r/y(1)[1 - y(1) exp(-/~#ex)] } 
1 i =  1 

x {1 - [a (q)+ v(y/)] exp( _fl#ex)} - i  (22) 

where the right-hand side of both equations is now a (highly nonlinear) 
functional of those quantities only upon which the H0ye and Stell solution 
of the OZ equation is constructed. Equations (14), (21), and (22) con- 
stitute our basic thermodynamic closure of the model. However, this set of 
equations will possibly admit a unique solution only if in Eq. (7) the upper 
summation index N is set equal to one. Unfortunately, it is not difficult to 
verify, at least in the low-density regime, that such a choice on the overall 
shape of the tail function inside the core is not flexible enough to support 
simultaneously the above thermodynamic constraints and does ultimately 
lead to unphysical results. At lowest order in r/ the tail function and its 
derivative at x = 0 are (2'2~ 

d(0)= 17q2+ .-- (23) 

d ' (0 )=  -33q2+  ..- (24) 

From Eqs. (15) and (16) we thus get' for ~ 1  and K within SCT(1) 

c~ ~ cr 0) = -33/17 (25) 
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and 

K ( q )  = K 2 g ]  2 n t- . . -  (26a) 

with 

/s = [17 exp( -33 /17 ) ]  (26b) 

On the other hand, in order for the inverse range parameter z to be real 
and positive in the limit of t/--, 0, the second-order coefficient/s is restric- 
ted to lie in the range (see the Appendix) 

0 ~< K2 ~< �88 (27) 

The boundary values in Eq. (27) do in fact correspond to the two distinct 
estimates which would be obtained for K2 via the OZ equation upon using 
the PY approximation for calculating the contact value of the RDF 
through the virial and fluctuation routes, respectively. The twofold condi- 
tion on K2 is visibly violated from the upper-bound side by the value 
obtained for this quantity within SCT(1). We thus need to extend the 
upper summation index in Eq. (7) up to N =  2, at the very least. However, 
for every new parameter besides K, z, and c~1 we need one extra equation 
as well. To this end, as moreover suggested in ref. 1, we shall further exploit 
the continuity properties of the tail function and, in particular, of its spatial 
derivatives at contact. 

4. ON THE C O N T I N U I T Y  OF THE TAIL FUNCTION 
AT C O N T A C T  

As is well known, upon taking into explicit account the finite discon- 
tinuity induced by the hard-core potential on both the RDF and DCF at 
x =  1, it is possible to show via the OZ equation that the function 
O(x)=y(x)-d(x), and correspondingly y(x) and d(x) as well, are 
piecewise analytic with discontinuities in the derivatives at x = 2, 3, 4,.... (8'9) 
In particular, it also follows that O(x) is continuous at contact with its first 
two derivatives, while as far as the third derivative is concerned, we find 

A8"(1)-8"'(1+)-0"(1 )=--24qy(1)Ac'(2) (28) 

Note, however, that at x = 2 the function O(x) turns out to be continuous 
with its first derivative. Hence, in the absence of more specific information 
on the exact behavior of the DCF outside the core, it may be plausible to 
assume that y(x) and d(x), too, are separately continuous with their first 
derivatives. Should this be the case, the continuity of O(x) at x = 1 would 
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extend up to the third derivative, as, moreover, is usually stated in the 
literature. 4 But again, as a matter of principle, these results on the con- 
tinuity at contact of O(x) together with its first three derivatives cannot be 
expected to hold necessarily also for y(x) and d(x) taken separately. 5 
However, fit least in the limit of low densities, the continuity of the tail 
function at x = 1 can be proven exactly up to its third derivative. In fact, 
as already noted, the density expansion of the tail function does actually 
start from order p2 and may be expressed as  (23) 

d ( x ) =  ~ d,(x) (29) 
n>~2 

In particular, the second-order contribution turns out to be given by the 
sum of the following connected simple graphs: 

d2(x)= ~ + ~ (30) 

where each line represents a Mayer f-bond,  with f (x)  - e x p [ - f l u ( x ) ]  - 1. 
These graphs have also been calculated exactly. Actually, they lead to two 
different analytical expressions whose domain of validity is confined to 
inside (24~ or outside the core, ~25) respectively. As expected, the two branches 
join at x =  1. The resulting d2(x) turns out to be a positive, continuous, 
and monotonously decaying function, which, moreover, vanishes identi- 
cally for distances larger than xf3. 

We have indeed verified the continuity of the first three derivatives of 
d2(x) at contact. Their expressions are particularly messy and respectably 
lengthy, so that we shall not report them here. The continuity of the tail 
function actually break downs with its fourth derivative, which has a 
discontinuity whose value is found to be 

Ad~'"(1) = 144~/2 (31) 

Correspondingly, it is possible to verify that the fourth derivative of y(x) 
has an equivalent discontinuity at x =  1 (but for an opposite sign). The 
resulting discontinuity in the difference function O(x) does indeed 
reproduce the result which can be calculated independently after expanding 

4 This statement is manifestly true in any approximation which rests on a fully analytical form 
for the DCF outside the core, as, for instance, in the PY theory (see, in this respect, ref. 9). 
However, Percus ~18) claims that for hard spheres the continuity of O(x) at contact with its 
first three derivatives is a general consequence of the OZ equation. 

5 In ref. 20, Henderson and Grundke, on building up their phenomenological ansatz for the 
cavity distribution function, actually invoke the continuity of the first derivative of y(x) at 
contact. However, the authors are not aware of any general proof of this statement either 
for the first derivative or for the second and third derivatives. 
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to order t/2 the exact expression of AO""(1). In fact, for this quantity we 
find 

AO""(1) = -288t /2[y(1) ]  3 + 24r/[Ac'(2). y ' (1)  - A c " ( 2 ) .  y(1)]  (32) 

Note that, as, moreover, has been already remarked, the DCF (and thus 
any potential discontinuity exhibited by this function at x = 2 )  vanishes 
identically for x ~> ~ up to second order in t/. Therefore, any contribution 
to A O ' ( 1 )  which might arise from the second term on the rhs of Eq, (32) 
would eventually show up only at order t/4. 

5. H IERARCHICAL SOLUTION OF THE THEORY: 
FOURTH VIRIAL COEFFICIENT 

In order to bypass the physical inconsistencies manifested by the pre- 
sent theory at the level configured with SCT(1), we shall model the form 
of the tail function inside the core in a more flexible way by extending the 
range of the summation in the argument of the exponential so as to include 
a number of terms N >  2 [see Eq. (7)]. The extra free parameters from the 
set {c~n} which thus come into play are determined by extrapolating the 
continuity at contact of the first ( N - 1 )  derivatives of the tail function 
(with N~<4) outside the low-density domain throughout the whole 
accessible region of the phase diagram. It is readily seen that the above 
condition imposed on d ' (x )  leads to 

cq=  - ( 1  + z )  (33) 

while ~2 is left "free," together with the Yukawa parameters K and z, to 
saturate the constraints provided by Eqs. (14), (21), and (22). This scheme 
will be referred to as SCT(2). Upon  pushing ahead this procedure, we 
obtain 

c~ 2 = 1/2 (34) 

which, together with Eq. (33) and e3 used to match the thermodynamic 
closure, defines SCT(3). 6 Finally, the last continuity condition imposed 
upon the third derivative leads to the scheme SCT(4) with (x 4 "free" and 

~3 ~ - 1 / 3  (35) 

while el and % are given by Eqs. (33) and (34), respectively. 

6 In ref. 22, Zhou and Stell finally analyze the results obtained within an approximate theory 
whose structtire is utterly equivalent to that of SCT(3) apart from the condition on the 
continuity of the second derivative of the tail function at contact. The missing equation 
is replaced by an external assumption for the EOS of the system, which is parametrized as 
an ad hoc mixture of the virial and fluctuation equations of state provided by the PY 
approximation. Hence, their procedure is not self-contained and, consequently, is not 
homogeneous with our approach at any level of the approximation. 
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The first comment which immediately arises after looking at 
Eqs. (33)-(35) is that only cq actually shows a density dependence via the 
inverse range parameter z. Therefore, it is reasonable to expect that the 
higher order schemes, i.e., SET(3) and SET(4), should behave somehow 
worse than SET(2) because of their inability to follow the density evolution 
of the model with the parameters ~2 and ~3, respectively. Indeed, it appears 
that within SET(2) and SET(3) the Yukawa ansatz for the DCF outside 
the core is too simple as compared to the shape of increasing complexity 
for d(x) inside the core, at least as far as the local properties beyond the 
first derivative are concerned. Therefore, upon pushing the theory beyond 
the SET(2) level, no new independent information on the structure of the 
model should be gained. These considerations may be explicitly substan- 
tiated by comparing, for example, the values of the fourth virial coefficient 
B 4 which are obtained in the three schemes. In fact, the theory does 
correctly reproduce the first three coefficients of the virial series independ- 
ently of the chosen closure. We refer the reader to the Appendix for more 
details on the calculations; we note that the exact value of B 4 is (m 

94/(192) 3= 18 .3648_ .  (36) 

w h e r e  B 2 = 27~0"3 is the second virial coefficient. We also note that the two 
PY values for the above quantity are 16 and 19, respectively, depending on 
whether the virial or fluctuation route is followed for the calculation, while 
the value implied by the Carnahan and Starling EOS (is) is 18. In Table I 
we report the estimates obtained within SCT, which also fall short of the 
exact value. However, the deviation is definitely less than 2% within 
SET(2), even lower than that corresponding to the CS assumption. The 
error made by SET increases slightly with the level of the approximation, 
consistent with the previous considerations on the relative predictive 

Table I. Fourth Virial Coefficient and q ~ 0  
Limit of the Inverse Range Parameter z 

Theory B4/(~B2)3 z(~ 

Exact 18.364._ 6.450 a 
SET(I)  - -  - -  
SET(2) 18.054 4.058 
SET(3) 17.853 3.184 
SET(4) 17.737 2.799 

aThis value is obtained from Eq. (A.1) using the exact 
value of B4. 
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Fig. 1. 
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The function dz(x ). The inset shows the difference between this quantity and its 
corresponding approximate form within SCT(2). 

capacity offered by the three schemes. Figure 1 shows the difference 
between the exact dz(x) and its approximation within SCT(2). The theory, 
while underestimating this function inside the core, shows a slower spatial 
decay for x > 1.12 with a vanishing tail extending beyond ,,f3. 

6. B R E A K D O W N  OF THE THEORY AT HIGH DENSITIES 

The OZ equation with a DCF of Yukawa form outside the core 
retains the PY singularity at r/= 1. Actually, it is easy to show that a 
generic "physical" solution of the one-Yukawa OZ theory (i.e., before any 
constraint whatsoever is imposed in order to fix both K and z) cannot 
exhibit any divergence for a value of the packing fraction strictly less than 
one. In fact, it is clear from Eq. (11) that the condition z > 0, ensuring the 
correct asymptotic behavior of the DCF for x/> 1, may be unconditionally 
satisfied in the range 0 ~< t/~< 1 only if 

y (1)>y~V(1)  (37) 

and 

a < a~ 'Y (38) 

Precisely this last condition on the inverse compressibility removes the 
possibility of a divergence of both y(1) and a for r/< 1. Such a shortcoming 
is the result of the ansatz made for the DCF outside the core. Therefore, 
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a one-Yukawa theory does not yet contain all the necessary elements which 
would make it possible to model in a correct way the behavior of the 
system at the point of maximum packing where the pressure has to diverge. 
However, it can also be shown that the generalized closure exploited in this 
paper does indeed force the theory to break down before the terminal 
singularity at q = 1 can be ultimately approached. In fact, the physical 
branch is bound to be eventually discontinued as the result of the 
impossibility for the solution to satisfy simultaneously for ~/-* 1- all of 
the constraints discussed above about the consistency between thermo- 
dynamics and structure and the continuity of the tail function at contact. 
At high densities, Eqs. (21) and (22) for the consistency inside the core 
asymptotically reduce to 

0~ 1 - -  0~ 2 ~ In K-flpex (39) 

el - 2e2 ~- -6~/y(1)  (40) 

From Eq. (33), ensuring the continuity of d'(x) at x =  1, we then find 
for z 

z = - l - 2 1 n K + 2 y ( 1 ) + 8  y(1)&/ (41) 

where use has been made of Eq. (17) for the excess chemical potential. On 
the other hand, the continuity of the function O(x) supplemented with 
Eq. (6) yields for K 

K= y(1)+e(1 ) (42) 

Since the quantity c(1 ) is negative, it follows from Eq. (40) that in the 
limit of q --* 1-  the strength of the Yukawa tail K is bound to diverge as 
y(1) at the most. Therefore, on the basis of some general constraints 
pertaining to the consistency between structure and thermodynamics and 
to the continuity properties of correlation functions at x =  1, the spatial 
decay rate of the DCF outside the core should asymptotically behave as 

z~- 2y(1) (43) 

since both in K and the integral on the rhs of Eq. (39) will eventually 
diverge, for q sufficiently close to 1, less rapidly than y(1). 

However, it is not difficult to verify that, given the boundary condi- 
tions (37) and (38) for the solution of the OZ integral equation, the 
asymptotic behavior of z which may be predicted in the limit of ~ -* 1 -  
through Eq. (11 ) is 

z ~ 4(1 - q) y(1 ) (44) 
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Quite clearly, Eqs. (43) and (44) cannot hold together. Hence, the present 
theory will lead to an acceptable physical solution under the constraints 
discussed above only over a restricted domain 0 ~ t/~< r/max-SCT with t/max" SCT <..~ 1. 

7. N U M E R I C A L  A L G O R I T H M  

Independently of the order of the approximation set for d(x) inside the 
core, one has to solve the coupled set of Eqs. (14), (21), and (22) with K, 
z, and c~ u playing the role of unknown primitive quantities, the residual 
coefficients e(n<u~ [whose number depends on the chosen scheme 
SCT(N)] being determined through Eqs. (33)-(35). The scheme is solved 
by an iterative procedure, starting from some initial guess for the thermo- 
dynamics of the system (e.g., the CS phenomenological EOS). Given at 
the ith cycle (with i =  1, 2,...) the iterant [y(1) ]  i evaluated in a range {0, t/} 
over a grid of equispaced points, we first compute the quantities ai and 
(/~#ex)i through Eqs. (14) and (17), respectively, using standard routines for 
the differentiation and integration of a tabulated function. The next iterant 
[y(1)]~+ 1 is then obtained from Eqs. (21) and (22), which are solved 
numerically for y(1) and ex. New values for the inverse compressibility 
and excess chemical potential ai+ 1 and (/~#ex),+l are calculated from 
[y(1)] i+  1 and used as input for the next cycle. This procedure is iterated 
until the demanded convergence rate of the thermodynamic output is 
achieved at each point in the sampled density range. Typically, using the 
above algorithm over a mesh of points separated by an interval At/= 0.005, 
it is possible to push the convergence rate of the calculation up to values 
of the order of 10 -10 10 -11. 

We find that the iterative procedure outlined above does lead to a 
properly convergent solution of the model in a range of densities which is 
quite restricted with respect to the original PY domain. Actually, the 
number of iterations needed to achieve a given convergence rate starts to 
increase in a fairly sharp way beyond t/-~ 0.7. For t/>~ 0.78 our algorithm 
fails to converge. More specifically, this means that it is possible to find a 
solution which converges uniformly with a rate, say, of 10- lO at all points 
sampled in the closed domain 0 ~< t/~< 0.775. This boundary, to within an 
error which is at the most equal to the integration step, turns out to be 
almost independent of the order of the approximation. Therefore, the 
highest limit density consistent with the theory is predicted to lie in the 

0.775 < t/ma X < 0.780. range set  

Still, as a matter of principle, it cannot be excluded that such an 
"instability" of the algorithm is a numerical artifact due, say, to the specific 
choice made for the initial guess on the thermodynamic iterants. This 
possibility must be taken into serious account particularly at high densities, 
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where the input may deviate highly from the solution given by the theory. 
We have tried to verify this by implementing an alternative procedure 
which works in a perturbative way and does not need any external input. 
The integration range is now extended step by step starting from r/= 0. The 
guess for the value of the iterants at the next added border point is in fact 
obtained by extrapolating the solution found before in the inner region, v At 
each stage, the algorithm can and actually does rearrange the iterants 
everywhere in the chosen interval as a result of the nonlocal nature of the 
consistency constraints. However, as one would expect, the numerical solu- 
tion rapidly saturates and the influence of each new point does not back- 
propagate deeply inside. We verify also that the solution thus found 
smoothly merges into the analytical expansion of the theory about t /= 0. 
This procedure works as long as one does not move beyond the claimed 
limit density s c v  g/ . . . .  . In fact, upon surpassing this border, we find that the 
solution at lower densities, which was already well stabilized, starts to be 
affected in a way which no longer complies with the exact expansion of the 
theory in the limit of r / ~  O. More specifically, the estimated iterants begin 
to exhibit an erratic dependence upon r/with the onset of irregular ripptes 
which gradually propagate to higher and higher densities the further the 

. scT until convergence is utterly lost. On this algorithm is pushed beyond q . . . .  
. SCT basis, we conclude that the branch detected for q > rlmax is not a proper 

solution of the self-consistent scheme. 

8. RESULTS A N D  D I S C U S S I O N  

8.1. Equation of State 

Table II reports the values of the parameters entering SCT(2), i.e., K, 
z, and cr as a function of r/, which have been calculated using the above 
algorithm. Correspondingly, Fig. 2 shows the equation of state Z(r/) = [tP/p 
plotted as the difference 

A Z ( r / )  = Z( r / )  - ZEw( r / )  (45)  

where ZEw(t/) is an analytic representation of the experimental EOS 
obtained through a least-square fit of a [-3/2] Pad6 approximant to 
Monte Carlo and molecular dynamics data for densities in the range 
0.03 <i/~<0.46. (26) Obviously, outside this domain, Zzw(t/) yields nothing 
but a mere extrapolation of the numerical simulation data. However, while 

v The first guess at r /=  0.01 is obtained from the analytic expansion of the theory to second 

order in r/ (see the Appendix).  
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Table  II. S C T ( 2 )  Free Parameters  as a Funct ion  o f  the  Packing Fract ion rl 

r/ ~2 K z 

0.000 - 0 . 1 5 5 8 5 0  x 101 0.000000 x 10 ~ 0.405818 x 101 

0.050 - 0 . 1 6 5 3 2 7  x 101 0.163277 x 10 -2 0.438719 x 101 

0.100 -0 .174295  x 101 0,831198 x 10 -2 0.476670 x 10 l 

0.150 - 0 . 1 8 1 6 5 2  x 101 0.238151 x 10 I 0.520607 x 10 l 

0.200 - 0 . 1 8 5 1 9 4  • 101 0.539749 x 10 1 0.571428 x 10 l 

0.250 -0 .181177  x 101 0.107731 • 10 ~ 0.630370 x 10 l 

0.300 - 0 . 1 6 4 1 9 2  x 101 0.198716 • 10 ~ 0.700031 x 101 

0.350 - 0 . 1 2 8 6 2 0  x 101 0.347338 x 10 ~ 0.787349 x 10 l 

0.400 - 0 . 7 1 4 6 0 7  x 10 ~ 0.583069 x 10 ~ 0.908077 x 10 l 

0.450 0.872291 x 10 1 0.949167 x 10 ~ 0.108807 x 102 
0,500 0.119971 • 101 0.151663 x 101 0.136127 x 102 

0.550 0.285036 x 101 0.241251 • 101 0.177628 x 102 

0.600 0.550499 x 101 0.387668 x 101 0.241766 x 102 
0.650 0.101243 x 102 0.639715 x 101 0.344905 x 102 

0.700 0.188859 x 102 0.110680 x 102 0.521757 x 102 

0.750 0.373945 x 102 0.206764 x 102 0.855630 x 102 

0.775 0.546535 x 102 0.294817 • 102 0.114255 • 103 

l 
50 

~ 
- 5 0  

0.0 

S ! + 
- ++ 

.," ~ .  

. . . . . . . . . . . . . . . . . . . . . . . . . .  " "  I 

0.5 1.0 

r2 

Fig. 2. Compress ib i l i ty  factor  Z( t / )=- f lP /p  p lo t ted  as the difference to the Erpenbeck  and 
W o o d  leas t -square  fit of M o n t e  Car lo  and  molecu la r  dynamics  data(Z6): crosses, SCT(2);  
do t ted  line, Pe rcus -Yev ick  (f luctuat ion route);  dashed  line, Pe rcus -Yev ick  (virial  route) ;  

con t inuous  line, C a r n a h a n  and  Starling. 
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there is no reason whatsoever to trust the reliability of ZEW(r/) at high den- 
sities, this approximant does still provide a convenient reference for com- 
paring different approximations with a finer resolution. In fact, in Fig. 2 we 
also show the PY virial and fluctuation equations of state, which, as expec- 
ted, bracket the EOS predicted by the present theory at all densities. Note 
also that the EOS given by SCT runs very close to CS up to high densities. 

Given the discussion in Section 6 of the rather different asymptotic 
behaviors which may be inferred for z after an analysis of the generalized 
set of constraints on one hand and of the bare OZ theory on the other, it 
is enlightening to look at the ratio z/y(1) as a function of t/. This quantity 
is shown in Fig. 3. In order to visualize the reason for the breakdown 
undergone by the theory at t/~_ 0.78, we first extrapolate the results given 
by SCT by fitting the last few points of y(1) to 

Y 
y ( 1 ) - - -  (46) 

(1 - . ) ~  

This two-parameter form with Y-0 .69  and ~ -  2.84 reproduces the high- 
density branch of y(1) with fair accuracy. The derivative of Eq. (46) yields 
through Eq. (14) the inverse compressibility. Obviously, for t /> 0.78 this fit 
will not produce an entirely consistent solution for the thermodynamics of 
the system. In fact, upon calculating z via the OZ route given in Eq. (11) 
we obtain a branch which, consistently with Eq. (44), extrapolates to zero 
(see Fig. 3). Alternatively, upon using Eq. (41), it becomes rather manifest 

4' 

0 
0.0 

t'4. 
+4. 4.+ 

+4. 4.+ 
4.4. 

4"-I-. 
t-4. ...,.  

O.5 1 .O 

~7 

Fig. 3. The ratio z/y(1) as a function of the packing fraction t/and asymptotic extrapolation 
of SCT(2) data (crosses) performed by using Eq. (46) together with Eq. (11) (continuous line) 
and Eq. (41) (dotted line), respectively. 
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that the theory is facing a rather sharp bifurcation since the branch 
obtained by solving this last equation behaves differently as r / ~  1, 
smoothly approaching 2 in agreement with Eq. (43). Note that for ~/> 0.7, 
SCT appears to have already entered the asymptotic regime where, 
initially, the two routes do in fact lead to consistent estimates. Therefore, 
the failure of the numerical algorithm at r/_~ 0.77-0.78 is precisely in 
relation to the irremediable relative divergence of the two branches. We 
shall discuss in the following section the possible physical foundations of 
such a finding. 

8.2. On the Breakdown of the Theory  for q > 0 . 7 8  

The location of the higher boundary predicted by the theory for the 
existence of a solution satisfying the threefold condition of thermodynamic 
consistency does not fall far from the closest-packing point (r/c p ~-0.74), 
corresponding to the state of maximal density which is available through 
an ordered arrangement of spheres. We surmise that this is not merely 
accidental. In fact, an even closer "coincidence" appears to support this 
feeling: the estimated border for the existence of a solution within SCT(2) 
lies just above the least upper bound for the densest packing of spheres 
obtained so far, viz., r/R =0.7796..., 8 a result found by Rogers (27) in 1958. 
We recall that ~/R is indeed the density corresponding to a local tetrahedral 
arrangement where four spheres touch one another at a time and thus can- 
not move closer together. However, it is also well known that this optimal 
configuration cannot be reproduced indefinitely on a global scale since 
regular tetrahedra do not fill three-dimensional space. 9 Hence, upon adding 
for instance new spheres to an initial seed of four ones, larger voids than 
those provided by an ideal tetrahedral network must open up at some stage 
here and there, ultimately leading to a structure whose density is actually 
lower than r/R. On a microscopic level, such voids may also be viewed as 
the average configurational outcome of a class of many-body collisional 
events tending to keep spheres apart, one from another. These effects, even 
after the statistical averaging, should also emerge in the direct correlation 
function which, as a matter of principle, contains all the relevant informa- 
tion about the local order building up in the system on a pair level. And, 
indeed, their presence may be traced back to some features which are found 
in the behavior of the DCF even at low densities. (24) In fact, at variance 
with d2(x), the next term in the density expansion of the tail function, 
d3(x), also attains negative values in the range 1.25<x~<2, before 

8 The exact result is ?~R = N~" [3 arc Cos(l/3)- 7z]. 
9 In fact, the dihedral angle of a regular tetrahedron is not a submultiple of 2re. 
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vanishing exactly for distances greater than two hard-sphere diameters. 
Within a framework analogous to the one previously discussed in Section 2, 
such a negative tail may be interpreted as the result of a net average repulsion 
acting between a couple of spheres well outside the range ~ covered by the 
mechanical hard-sphere interaction (see footnote 3). As already stressed 
before when discussing the positive component in the DCF, this "thermal 
repulsion" is again the outcome of a collective interplay involving all of the 
remaining particles, which, to some extent, act in such a way as to loosen 
the rigidity of the cage stabilized at shorter distances by the effects giving 
rise to the stronger positive tail. It is clear that the importance of such 
features in the DCF should increase with the density. The existence of a 
negative tail has been in fact postulated in density-functional theories of 
the freezing (28~ and of the liquid-glass transition (29~ for hard spheres. But 
an even more stringent argument invoking its presence in the DCF has 
been recently formulated by Song etal. (3~ These authors note that, on 
approaching the thermodynamic singularity associated with the state of 
maximum packing, the pressure of the system should clearly diverge. On 
the other hand, density fluctuations (and, correspondingly, the isothermal 
compressibility) should eventually vanish. As a result, the direct correlation 
function must become infinitely long ranged, vanishing asymptotically from 
the negative side! 

Retrospectively, the very absence of this last feature in a model single- 
Yukawa DCF naturally accounts (while not being perhaps the only cause) 
for the overshooting of the highest density attainable by the system within 
SCT. In fact, upon neglecting any extra contribution outside the core apart 
from an attractive positive tail, the present scheme unbalances the relative 
weight associated with the two types of short-range correlation effects 
discussed above. As a result, at a given pressure P the theory produces 
a macroscopic state characterized by a tighter packing than that which 
actually occurs, say, in a numerical simulation experiment. Furthermore, 
the absence of a negative tail in our ansatz for the DCF precludes the 
theory from driving the thermodynamic properties to a proper singularity 

. SCT for q=rlmax. Notwithstanding these deficiencies, the present scheme 
predicts the existence of a higher boundary well beneath ;7 = 1 on account 
of the failure to achieve complete thermodynamic consistency. Altogether, 
this result appears as a nontrivial, soundly physical improvement over 
the typically "one-dimensional" features pv (t/ma x = l) which are regrettably 
conveyed into a three-dimensional formulation by the PY theory. 

822/63/1-2-11 



160 Giaquinta e t  al.  

8.3. The Radial Distr ibution Function and the Point of 
Random Close Packing 

As recalled in the Introduction, the first minimum in the PY radial 
distribution function touches zero for a value of the packing fraction 

PY ~]min ' ~  0.612. From there on, with increasing density, the minimum turns 
into an increasingly negative dip. Since, by definition, the RDF should be 
positive for all x, the solution of the PY approximation is not considered 

PY physically acceptable for q > r/mi n, "despite the fact that the equation of 
state shows no discontinuity whatever at this density, and continues 
smoothly up to t /= 1. "(30) Still, the vanishing of the first minimum in the 
RDF is not without relevance as far as the type of local order established 
in the system is concerned. In fact, at the above density the first coordina- 
tion shell eventually acquires a well-defined identity and stability relative to 
the outer shells of neighbors. Correspondingly, it becomes possible to state 
unanbiguously how many particles give rise to the cage confining a central 
tagged particle anywhere in the system. Within SCT(2), where the value of 
the calculated density is n scT(2) - , m i n  ~ 0.635 + 0.005, the coordination number 
calculated from the RDF (which is shown in Fig. 4) turns out to be 12.0, ~~ 
as one would expect. Twelve is in fact the "kissing number," i.e., the 
maximum number of spheres which can be arranged around a central one 
in such a way that each of the surrounding particles may actually touch the 
central one. 

10 The PY value at r /= ~/~iVn is 12.3. 

Fig. 4. 
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Radial distribution function g(x) for r /= 0.635: dotted line, SCT(2); continuous line, 
Percus-Yevick. 
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In a different but still related sense, we also note that the first shell 
happens to saturate at a density which, within both numerical and 
experimental accuracy, essentially drops over the currently estimated value 
of the RCP threshold qRcP = 0.64_ 0.02. (1~ This happenstance is undoubt- 
edly quite suggestive: the onset of the topological condition described 
above is, apparently, revealed as the equilibrium facet of the nonequilibrium 
aggregation phenomenon, leading, in either a "real-life" or numerical 
experiment, to the state of random close packing. Such a hypothesis is in 
fact justified by a number of correlated structural and dynamical facts. In 
the density region in which we are concerned, configuration relaxation 
times become extremely long: particles get locally trapped and, con- 
sistently, their diffusion coefficient sharply drops to zero. (31'32/ Therefore, 
establishing complete equilibrium in a concrete physical sample may well 
turn into an increasingly difficult task. On this basis, upon compressing or 
compacting a system of hard spheres within a container, it is not unlikely 
to see the gradual merging of the equilibrium branch into a nonequilibrium 
branch terminating at the point of RCP. Following this idea, it is 
interesting to compare the structure of the fluid at RCP (or in a state close 
to RCP) with the type of order emerging in the RDF given by the present 
equilibrium theory at similar densities. A dense random packing of spheres 
can be simulated on a computer by a sequential addition technique some- 
what analogous to the experimental method of vapor deposition at 
absolute zero. ~33) In Fig. 5 we show the RDF calculated through such a 
technique from the coordinates of 3999 particles following a "global" 

2 

. ,  - . .  

0 
2 3 4 5 

x 

Fig. 5. Comparison between SCT(2) radial distribution function g(x) for q =0.61 (dotted 
line) and Bennett's RDF (histogram) obtained on a computer by a static sequential addition 
techniqueJ TM 
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building criterion: any new particle is added at that surface site--formed by 
three preexisting kissing spheres--which is closest to the center of the 
original seed cluster (typically, an equilateral triangle of three particles in 
contact). The dotted curve is the RDF evaluated within SCT(2) at t /= 0.61 
corresponding to the value of the cluster packing fraction extrapolated to 
infinite volume so as to eliminate size and boundary effects. Taking into 
account the profound difference between the methods used for obtaining 
the above quantities, the overall mutual agreement seems unexpectedly 
good. The shape of the maxima in the cluster RDF is reproduced by the 
theory with fairly quantitative accuracy. In particular, the shoulder 
emerging on the inside of the second peak is notoriously associated with 
the frequent occurrence of typical tetrahedral arrangements where two 
tetrahedra share a common base (a trigonal bipyramid configuration) or 
just a common side. In the former case, the two tetrahedron apices are 
separated by a distance 2 ,,f6/3 ~ 1.633, while in the latter situation the 
two coplanar equilateral bases have opposite apices separated by a distance 
x / ~ -  1.732. At variance with the peaks, valleys as predicted by the theory 
are systematically deeper. Actually, such a discrepancy can be traced back 
to the nature of the addition algorithm, which, on the average, generates 
geometries where each particle rests on three "older" spheres and in turn 
supports three "younger" particles. This type of local arrangement leads in 
general to six "close" contacts, and to a lower number of "near" contacts 
(such that particles nearly touch) which are distributed over slightly greater 
distances. (34) On the other hand, the theory, in virtue of the thermal equi- 
librium sampling effectively implied over the whole spectrum of allowed 
configurations, models a more uniform local distribution of particle separa- 
tions and does not obviously distinguish between close and near contacts. 
Apart from this marginal aspect, the close similarity of the two structure 
functions gives support to our conjecture about the nature of the random 
close-packing state and its corresponding signature in the equilibrium 
properties of the system. 

As already stated, for densities r/> nSCT~21-, min the information contained in 
the RDF is no longer reliable. The modification of the PY ansatz for the 
DCF outside the core with a simple Yukawa tail is not adequate for 
removing entirely the presence of regions where the RDF becomes 
negative. What one would indeed expect to happen in the RDF from 
~SCT(2) min on is an increasing flattening of the function down to zero in a 
range expanding progressively on both sides of the point where the RDF 
initially touched zero. Indeed, in one dimension, where the PY closure is 
exact, the RDF is described for 1 < x < 2 by just one single exponential, 
which, at high densities, sharply flattens to zero well before the rise of the 
second shell at x = 2. 
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9. CONCLUDING REMARKS 

In this paper we have analyzed the predictions given by a self-con- 
tained OZ approach to the structure and thermodynamics of hard spheres 
with particular emphasis on the properties of the system at high density. 
The scheme is based upon an approximation for the tail function d(x), 
which, outside the core, reduces to a one-Yukawa form h la Waisman. The 
parameters entering our ansatz for d(x) are calculated by resorting to a 
generalized closure, which rests upon the requirement of full consistency 
between thermodynamics and structure at a pair level and on the con- 
tinuity properties of the tail function at contact. The theory has been solved 
numerically by an iterative procedure, but, at variance with other well- 
known approximations, a solution has been found only over a restricted 
density range, i.e., for values of the packing fraction not greater than 0.78. 
The prediction of a higher boundary, where the physical branch discon- 
tinuously terminates, is in fair suggestive agreement with the existence of a 
state of maximum packing for a system of hard spheres. However, on 
account of the incompleteness of the ansatz for the tail function outside the 
core, the breakdown of the theory is not sustained by a singularity in the 
thermodynamic properties and the radial distribution function still shows 
unphysical negative regions. Therefore, we believe that a more definite 
statement about the envisaged relation between the boundary predicted by 
SCT and the closest-packing point of hard spheres may only come after 
some further analysis to be carried out on a more flexible scheme such as 
that potentially provided by a two-Yukawa approximation for d(x) outside 
the core. H A deeper elucidation of this point, which is also relevant to 
the question concerning the description of the system in the region where 
a fluid-to-solid phase transition is observed in numerical simulation 
experiments, is left to a forthcoming paper. 

APPENDIX.  LOW-DENSITY EXPANSION 

As already discussed in ref. 2, upon expanding to order t/2, Eq. (11), 
we find 

z (~ - Lim z(t/) 
r / ~0  

= {3/(2+ [3K2(6--5K2)]l/2}(3-4K2) ~ (A.1) 

11 The need to resort to a better approximation for the DCF outside the core such as that 
provided by a two-Yukawa form has been stressed also by Zhou and Stell, who in ref. 22 
note that "the one-Yukawa fit for c(r), r>a ,  is not accurate enough to support  self- 
consistently an extremely accurate equation of state." 
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where K2 is defined through Eq. (26a). Equation (A.1) already ensures the 
consistency between the virial and fluctuation routes to the evaluation of 
the EOS to second order in the density. The residual conditions arising 
from the two zero-separation theorems lead to one more relation between 
z (~ and K2, whose form, however, depends on the approximation adopted 
for the tail function inside the core and, more specifically, on the value set 
for the upper summation index N in Eq. (7). Upon expanding Eqs. (21 
and (22) and after making convenient use of Eqs. (33)-(35), we find 

5o 2 In(K2/17) (A.2) SCT(2) => z (~ = 17 

SCT(3) =~ z(0~ 15t 3 ln(K2/t7 ) (A.3) 
- -  6 8  

320 4 ln(K2/17 ) (A.4) S C T ( 4 ) ~ z  (~ 153 

Each of these equations, when coupled with Eq.(A.1), leads to a 
transcendental equation for K 2 which can be solved numerically. The 
fourth virial coefficient is related to K2 via the equation 

B4/('�88 3 = 16 + 4K 2 (A.5) 

The results we thus find in each scheme are summarized in Table I. Note 
that the first entry for z (~ (6.450) is obtained from Eq. (A.1) when K2 is 
calculated through Eq. (A.5) using the exact value for the fourth virial 
coefficient. We include this number as a reference value for the estimates 
following from SCT. We also note that this result for z (~ is pretty close to 
but still higher than the value (5.998) derived through an external fitting 
procedure which, after fixing c(1 +) to the value known exactly at order p2, 
evaluates z (~ by requiring the L 2 n o r m  of the difference between the 
Yukawa tail and dz(x  ) outside the core to be as small as possible. (3s) We 
note that a faster spatial decay of the DCF is more consistent with the 
behavior of dz(x  ) which is known to vanish for distances greater than x/3. 
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